Dimethylarginine dimethylaminohydrolase (DDAH) regulates trophoblast invasion and motility through effects on nitric oxide.

نویسندگان

  • L J Ayling
  • G St J Whitley
  • J D Aplin
  • J E Cartwright
چکیده

BACKGROUND Invasion of trophoblast into the uterine environment is crucial for establishing a successful pregnancy. Physiological production of nitric oxide (NO) by extravillous trophoblasts results in significant pro-invasive effects. NO synthesis is competitively inhibited by methylated arginine analogues such as asymmetric dimethylarginine (ADMA) but not the enantiomer symmetric dimethylarginine (SDMA). Within cells, the concentration of ADMA is regulated by the activity of the enzyme dimethylarginine dimethylaminohydrolase (DDAH). The aim of this study was to examine DDAH expression and function in trophoblasts. METHODS AND RESULTS DDAH-1 and DDAH-2 messenger RNA and protein were demonstrated in first trimester placental tissue, primary extravillous trophoblasts and extravillous trophoblast-derived cell lines. DDAH activity was demonstrated in both cells and tissue. Overexpression of DDAH-1 in trophoblasts led to a number of significant changes, including an 8-fold increase in enzymatic activity, a 59% decrease in production of ADMA (but not SDMA), a 1.9-fold increase in NO and a 1.6-fold increase in cyclic guanosine monophosphate (cGMP) production. Functional assays showed that increased DDAH activity led to significantly increased cell motility and invasion in response to hepatocyte growth factor (HGF). CONCLUSIONS DDAH may play an important role in the regulation of extravillous trophoblast function via its effects on ADMA and NO production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

The ADMA/DDAH pathway is a critical regulator of endothelial cell motility.

Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial...

متن کامل

Inhibition of DDAH1, but not DDAH2, results in apoptosis of a human trophoblast cell line in response to TRAIL

STUDY QUESTION Does inhibition of dimethylarginine dimethylaminohydrolase (DDAH) increase the sensitivity of trophoblasts to TRAIL-induced apoptosis? SUMMARY ANSWER Inhibition of DDAH1, but not DDAH2, increases the sensitivity of trophoblasts to TRAIL-induced apoptosis. WHAT IS KNOWN ALREADY Successful human pregnancy is dependent on adequate trophoblast invasion and remodelling of the mate...

متن کامل

Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype.

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphologic...

متن کامل

Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase.

In response to vascular insults, inflammatory cytokines stimulate vascular smooth muscle cells (SMCs) to express an inducible isoform of nitric oxide synthase (iNOS). Asymmetric dimethylarginine (ADMA), an endogenous NO synthase inhibitor, is metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To determine whether the ADMA-DDAH system regulates cytokine-induced NO production, culture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human reproduction

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2006